Decorator Design Pattern using lambdas

With the advent of lambdas in Java we now have a new tool to better design our code. Of course the first step is using streams, method references and other neat features introduced in Java 8.

Going forward I think the next step is to revisit the well established Design Patterns and see them through the functional programming lenses. For this purpose I’ll take the Decorator Pattern and implement it using lambdas.

We’ll take an easy and delicious example of the Decorator Pattern: adding toppings to pizza. Here is the standard implementation as suggested by GoF:

First we have the interface that defines our component:

public interface Pizza {
    String bakePizza();
}

We have a concrete component:

public class BasicPizza implements Pizza {
    @Override
    public String bakePizza() {
        return "Basic Pizza";
    }
}

We decide that we have to decorate our component in different ways. We go with Decorator Pattern. This is the abstract decorator:

public abstract class PizzaDecorator implements Pizza {
    private final Pizza pizza;
    
    protected PizzaDecorator(Pizza pizza) {
        this.pizza = pizza;
    }

    @Override
    public String bakePizza() {
        return pizza.bakePizza();
    }
}

we provide some concrete decorators for the component:

public class ChickenTikkaPizza extends PizzaDecorator {
    protected ChickenTikkaPizza(Pizza pizza) {
        super(pizza);
    }

    @Override
    public String bakePizza() {
        return super.bakePizza() + " with chicken topping";
    }
}

public class ProsciuttoPizza extends PizzaDecorator {

    protected ProsciuttoPizza(Pizza pizza) {
        super(pizza);
    }

    @Override
    public String bakePizza() {
        return super.bakePizza() + " with prosciutto";
    }
}

and this is the way to use the new structure:

Pizza pizza = new ChickenTikkaPizza(new BasicPizza());
String finishedPizza = pizza.bakePizza();   //Basic Pizza with chicken topping

pizza = new ChickenTikkaPizza(new ProsciuttoPizza(new BasicPizza()));
finishedPizza  = pizza.bakePizza();  //Basic Pizza with prosciutto with chicken topping

we can see that this can get very messy, and it did get very messy if we think about how we handle buffered readers in java:

new DataInputStream(new BufferedInputStream(new FileInputStream(new File("myfile.txt"))))

of course, you can split that in multiple lines, but that won’t solve the messiness, it will just spread it.
Now lets see how we can do the same thing using lambdas.
We start with the same basic component objects:

public interface Pizza {
    String bakePizza();
}

public class BasicPizza implements Pizza {
    @Override
    public String bakePizza() {
        return "Basic Pizza";
    }
}

But now instead of declaring an abstract class that will provide the template for decorations, we will create the decorator that asks the user for functions that will decorate the component.

public class PizzaDecorator {
    private final Function<Pizza, Pizza> toppings;

    private PizzaDecorator(Function<Pizza, Pizza>... desiredToppings) {
        this.toppings = Stream.of(desiredToppings)
                .reduce(Function.identity(), Function::andThen);

    }

    
    public static String bakePizza(Pizza pizza, Function<Pizza, Pizza>... desiredToppings) {
        return new PizzaDecorator(desiredToppings).bakePizza(pizza);
    }

private String bakePizza(Pizza pizza) {
    return this.toppings.apply(pizza).bakePizza();
}

}

There is this line that constructs the chain of decorations to be applied:

Stream.of(desiredToppings).reduce(identity(), Function::andThen);

This line of code will take your decorations (which are of Function type) and chain them using andThen. This is the same as

(currentToppings, nextTopping) -> currentToppings.andThen(nextTopping)

and it sure that the functions are called subsequently in the order you provided.
Also Function.identity() is translated to elem -> elem lambda expression.

Ok, now where we’ll we define our decorations? You can add them as static methods in PizzaDecorator or even in the interface:

public interface Pizza {
    String bakePizza();

    static Pizza withChickenTikka(Pizza pizza) {
        return new Pizza() {
            @Override
            public String bakePizza() {
                return pizza.bakePizza() + " with chicken";
            }
        };
    }

    static Pizza withProsciutto(Pizza pizza) {
        return new Pizza() {
            @Override
            public String bakePizza() {
                return pizza.bakePizza() + " with prosciutto";
            }
        };
    }
}

And now, this is how this pattern gets to be used:

String finishedPizza = PizzaDecorator.bakePizza(new BasicPizza(),Pizza::withChickenTikka, Pizza::withProsciutto);

//And if you static import PizzaDecorator.bakePizza:

String finishedPizza  = bakePizza(new BasicPizza(),Pizza::withChickenTikka, Pizza::withProsciutto);

As you can see, the code got more clear and more concise, and we didn’t use inheritance to build our decorators.

This is just one of the many design pattern that can be improved using lambdas. There are more features that can be used to improve the rest of them like using partial application (currying) to implement Adapter Pattern.

I hope I got you thinking about adopting a more functional programming approach to your development style.

UPDATE: Here you can find a video walkthrough of this article, created by my friends from Webucator:

If you want to see more of their tutorials you can visit Webucator site

Bibliography:

The decorator example was inspired by Gang of Four – Decorate with Decorator Design Pattern article

The refactoring method was inspired by the following Devoxx 2015 talks (which I recommend watching as they treat the subject at large):
Design Pattern Reloaded by Remi Forax
Design Patterns in the Light of Lambda Expressions by Venkat Subramaniam

 

Functional vs Imperative Programming. Fibonacci, Prime and Factorial in Java 8

There are multiple programming styles/paradigms, but two well-known ones are Imperative and Functional.

Imperative programming is the most dominant paradigm as nearly all mainstream languages (C++, Java, C#) have been promoting it. But in the last few years functional programming started to gain attention. One of the main driving factors is that simply all new computers are shipped with 4, 8, 16 or more cores and it’s very difficult to write a parallel program in imperative style to utilize all cores. Functional style moves this difficultness to the runtime level and frees developers from hard and error-prone work.

Wait! So what’s the difference between these two styles.

Imperative programming is a paradigm where you tell how exactly and which exact statements machine/runtime should execute to achieve desired result.

Functional programming is a form of declarative programming paradigm where you tell what you would like to achieve and machine/runtime determines the best way how to do it.

Functional style moves the how part to the runtime level and helps developers focus on the what part. By abstracting the how part we can write more maintainable and scalable software.

To handle the challenges introduced by multicore machines and to remain attractive for developers Java 8 introduced functional paradigm next to imperative one.

Enough theory, let’s implement few programming challenges in Imperative and Functional style using Java and see the difference.

Fibonacci Sequence Imperative vs Functional (The Fibonacci Sequence is the series of numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, … The next number is found by adding up the two numbers before it.)

Fibonacci Sequence in iterative and imperative style

public static int fibonacci(int number) {
  int fib1 = 1;
  int fib2 = 1;
  int fibonacci = fib1;
  for (int i = 2; i < number; i++) {
    fibonacci = fib1 + fib2;
    fib1 = fib2;
    fib2 = fibonacci;
  }
  return fibonacci;
}

for(int i = 1; i  <= 10; i++) {
  System.out.print(fibonacci(i) +" ");
}
// Output: 1 1 2 3 5 8 13 21 34 55 

As you can see here we are focusing a lot on how (iteration, state) rather that what we want to achieve.

Fibonacci Sequence in iterative and functional style

IntStream fibonacciStream = Stream.iterate(
    new int[]{1, 1},
    fib -> new int[] {fib[1], fib[0] + fib[1]}
  ).mapToInt(fib -> fib[0]);

fibonacciStream.limit(10).forEach(fib ->  
    System.out.print(fib + " "));
// Output: 1 1 2 3 5 8 13 21 34 55 

In contrast, you can see here we are focusing on what we want to achieve.

Prime Numbers Imperative vs Functional (A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.)

Prime Number in imperative style

public boolean isPrime(long number) {  
  for(long i = 2; i <= Math.sqrt(number); i++) {  
    if(number % i == 0) return false;  
  }  
  return number > 1;  
}
isPrime(9220000000000000039L) // Output: true

Again here we are focusing a lot on how (iteration, state).

Prime Number in functional style

public boolean isPrime(long number) {  
  return number > 1 &&  
    LongStream
     .rangeClosed(2, (long) Math.sqrt(number))  
     .noneMatch(index -> number % index == 0);
}
isPrime(9220000000000000039L) // Output: true

Here again we are focusing on what we want to achieve. The functional style helped us to abstract away the process of explicitly iterating over the range of numbers.

You might now think, hmmm, is this all we can have …. ? Let’s see how can we use all our cores (gain parallelism) in functional style.

public boolean isPrime(long number) {  
  return number > 1 &&  
    LongStream
    .rangeClosed(2, (long) Math.sqrt(number))
    .parallel()  
    .noneMatch(index -> number % index == 0);
}
isPrime(9220000000000000039L) // Output: true

That’s it! We just added .parallel() to the stream. You can see how library/runtime handles complexity for us.

Factorial Imperative vs Functional ( The factorial of n is the product of all positive integers less than or equal to n.)

Factorial in iterative and imperative style

public long factorial(int n) {
  long product = 1;
  for ( int i = 1; i <= n; i++ ) {
    product *= i;
  }
  return product;
}
factorial(5) // Output: 120

Factorial in iterative and functional style

public long factorial(int n) {
 return LongStream
   .rangeClosed(1, n)
   .reduce((a, b) -> a *   b)
   .getAsLong();
}
factorial(5) // Output: 120

It’s worth repeating that by abstracting the how part we can write more maintainable and scalable software.

To see all the functional goodies introduced by Java 8 check out the following Lambda Expressions, Method References and Streams guide. Continue reading Functional vs Imperative Programming. Fibonacci, Prime and Factorial in Java 8

Reactive Development Using Vert.x

Lately, it seems like we’re hearing about the latest and greatest frameworks for Java. Tools like Ninja, SparkJava, and Play; but each one is opinionated and make you feel like you need to redesign your entire application to make use of their wonderful features. That’s why I was so relieved when I discovered Vert.x. Vert.x isn’t a framework, it’s a toolkit and it’s un-opinionated and it’s liberating. Vert.x doesn’t want you to redesign your entire application to make use of it, it just wants to make your life easier. Can you write your entire application in Vert.x? Sure! Can you add Vert.x capabilities to your existing Spring/Guice/CDI applications? Yep! Can you use Vert.x inside of your existing JavaEE applications? Absolutely! And that’s what makes it amazing.

Background

Vert.x was born when Tim Fox decided that he liked a lot of what was being developed in the NodeJS ecosystem, but he didn’t like some of the trade-offs of working in V8: Single-threadedness, limited library support, and JavaScript itself. Tim set out to write a toolkit which was unopinionated about how and where it is used, and he decided that the best place to implement it was on the JVM. So, Tim and the community set out to create an event-driven, non-blocking, reactive toolkit which in many ways mirrored what could be done in NodeJS, but also took advantage of the power available inside of the JVM. Node.x was born and it later progressed to become Vert.x.

Overview

Vert.x is designed to implement an event bus which is how different parts of the application can communicate in a non-blocking/thread safe manner. Parts of it were modeled after the Actor methodology exhibited by Eralng and Akka. It is also designed to take full advantage of today’s multi-core processors and highly concurrent programming demands. As such, by default, all Vert.x VERTICLES are implemented as single-threaded by default. Unlike NodeJS though, Vert.x can run MANY verticles in MANY threads. Additionally, you can specify that some verticles are “worker” verticles and CAN be multi-threaded. And to really add some icing on the cake, Vert.x has low level support for multi-node clustering of the event bus via the use of Hazelcast. It has gone on to include many other amazing features which are too numerous to list here, but you can read more in the official Vert.x docs.

The first thing you need to know about Vert.x is, similar to NodeJS, never block the current thread. Everything in Vert.x is set up, by default, to use callbacks/futures/promises. Instead of doing synchronous operations, Vert.x provides async methods for doing most I/O and processor intensive operations which might block the current thread. Now, callbacks can be ugly and painful to work with, so Vert.x optionally provides an API based on RxJava which implements the same functionality using the Observer pattern. Finally, Vert.x makes it easy to use your existing classes and methods by providing the executeBlocking(Function f) method on many of it’s asynchronous APIs. This means you can choose how you prefer to work with Vert.x instead of the toolkit dictating to you how it must be used.

The second thing to know about Vert.x is that it composed of verticles, modules, and nodes. Verticles are the smallest unit of logic in Vert.x, and are usually represented by a single class. Verticles should be simple and single-purpose following the UNIX Philosophy. A group of verticles can be put together into a module, which is usually packaged as a single JAR file. A module represents a group of related functionality which when taken together could represent an entire application or just a portion of a larger distributed application. Lastly, nodes are single instances of the JVM which are running one or more modules/verticles. Because Vert.x has clustering built-in from the ground up, Vert.x applications can span nodes either on a single machine or across multiple machines in multiple geographic locations (though latency can hider performance).

Example Project

Now, I’ve been to a number of Meetups and conferences lately where the first thing they show you when talking about reactive programming is to build a chat room application. That’s all well and good, but it doesn’t really help you to completely understand the power of reactive development. Chat room apps are simple and simplistic. We can do better. In this tutorial, we’re going to take a legacy Spring application and convert it to take advantage of Vert.x. This has multiple purposes: It shows that the toolkit is easy to integrate with existing Java projects, it allows us to take advantage of existing tools which may be entrenched parts of our ecosystem, and it also lets us follow the DRY principle in that we don’t have to rewrite large swathes of code to get the benefits of Vert.x.

Our legacy Spring application is a contrived simple example of a REST API using Spring Boot, Spring Data JPA, and Spring REST. The source code can be found in the “master” branch HERE. There are other branches which we will use to demonstrate the progression as we go, so it should be simple for anyone with a little experience with git and Java 8 to follow along. Let’s start by examining the Spring Configuration class for the stock Spring application.


@SpringBootApplication
@EnableJpaRepositories
@EnableTransactionManagement
@Slf4j
public class Application {
    public static void main(String[] args) {
        ApplicationContext ctx = SpringApplication.run(Application.class, args);

        System.out.println("Let's inspect the beans provided by Spring Boot:");

        String[] beanNames = ctx.getBeanDefinitionNames();
        Arrays.sort(beanNames);
        for (String beanName : beanNames) {
            System.out.println(beanName);
        }
    }

    @Bean
    public DataSource dataSource() {
        EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
        return builder.setType(EmbeddedDatabaseType.HSQL).build();
    }

    @Bean
    public EntityManagerFactory entityManagerFactory() {
        HibernateJpaVendorAdapter vendorAdapter = new HibernateJpaVendorAdapter();
        vendorAdapter.setGenerateDdl(true);

        LocalContainerEntityManagerFactoryBean factory = new LocalContainerEntityManagerFactoryBean();
        factory.setJpaVendorAdapter(vendorAdapter);
        factory.setPackagesToScan("com.zanclus.data.entities");
        factory.setDataSource(dataSource());
        factory.afterPropertiesSet();

        return factory.getObject();
    }

    @Bean
    public PlatformTransactionManager transactionManager(final EntityManagerFactory emf) {
        final JpaTransactionManager txManager = new JpaTransactionManager();
        txManager.setEntityManagerFactory(emf);
        return txManager;
    }
}

As you can see at the top of the class, we have some pretty standard Spring Boot annotations. You’ll also see an @Slf4j annotation which is part of the lombok library, which is designed to help reduce boiler-plate code. We also have @Bean annotated methods for providing access to the JPA EntityManager, the TransactionManager, and DataSource. Each of these items provide injectable objects for the other classes to use. The remaining classes in the project are similarly simplistic. There is a Customer POJO which is the Entity type used in the service. There is a CustomerDAO which is created via Spring Data. Finally, there is a CustomerEndpoints class which is the JAX-RS annotated REST controller.

As explained earlier, this is all standard fare in a Spring Boot application. The problem with this application is that for the most part, it has limited scalability. You would either run this application inside of a Servlet container, or with an embedded server like Jetty or Undertow. Either way, each requests ties up a thread and is thus wasting resources when it waits for I/O operations.

Switching over to the Convert-To-Vert.x-Web branch, we can see that the Application class has changed a little. We now have some new @Bean annotated methods for injecting the Vertx instance itself, as well as an instance of ObjectMapper (part of the Jackson JSON library). We have also replaced the CustomerEnpoints class with a new CustomerVerticle. Pretty much everything else is the same.

The CustomerVerticle class is annotated with @Component, which means that Spring will instantiate that class on startup. It also has it’s start method annotated with @PostConstruct so that the Verticle is launched on startup. Looking at the actual content of the code, we see our first bits of Vert.x code: Router.

The Router class is part of the vertx-web library and allows us to use a fluent API to define HTTP URLs, methods, and header filters for our request handling. Adding the BodyHandler instance to the default route allows a POST/PUT body to be processed and converted to a JSON object which Vert.x can then process as part of the RoutingContext. The order of routes in Vert.x CAN be significant. If you define a route which has some sort of glob matching (* or regex), it can swallow requests for routes defined after it unless you implement chaining. Our example shows 3 routes initially.


    @PostConstruct
    public void start() throws Exception {
        Router router = Router.router(vertx);
        router.route().handler(BodyHandler.create());
        router.get("/v1/customer/:id")
                .produces("application/json")
                .blockingHandler(this::getCustomerById);
        router.put("/v1/customer")
                .consumes("application/json")
                .produces("application/json")
                .blockingHandler(this::addCustomer);
        router.get("/v1/customer")
                .produces("application/json")
                .blockingHandler(this::getAllCustomers);
        vertx.createHttpServer().requestHandler(router::accept).listen(8080);
    }

Notice that the HTTP method is defined, the “Accept” header is defined (via consumes), and the “Content-Type” header is defined (via produces). We also see that we are passing the handling of the request off via a call to the blockingHandler method. A blocking handler for a Vert.x route accepts a RoutingContext object as it’s only parameter. The RoutingContext holds the Vert.x Request object, Response object, and any parameters/POST body data (like “:id”). You’ll also see that I used method references rather than lambdas to insert the logic into the blockingHandler (I find it more readable). Each handler for the 3 request routes is defined in a separate method further down in the class. These methods basically just call the methods on the DAO, serialize or deserialize as needed, set some response headers, and end() the request by sending a response. Overall, pretty simple and straightforward.


    private void addCustomer(RoutingContext rc) {
        try {
            String body = rc.getBodyAsString();
            Customer customer = mapper.readValue(body, Customer.class);
            Customer saved = dao.save(customer);
            if (saved!=null) {
                rc.response().setStatusMessage("Accepted").setStatusCode(202).end(mapper.writeValueAsString(saved));
            } else {
                rc.response().setStatusMessage("Bad Request").setStatusCode(400).end("Bad Request");
            }
        } catch (IOException e) {
            rc.response().setStatusMessage("Server Error").setStatusCode(500).end("Server Error");
            log.error("Server error", e);
        }
    }

    private void getCustomerById(RoutingContext rc) {
        log.info("Request for single customer");
        Long id = Long.parseLong(rc.request().getParam("id"));
        try {
            Customer customer = dao.findOne(id);
            if (customer==null) {
                rc.response().setStatusMessage("Not Found").setStatusCode(404).end("Not Found");
            } else {
                rc.response().setStatusMessage("OK").setStatusCode(200).end(mapper.writeValueAsString(dao.findOne(id)));
            }
        } catch (JsonProcessingException jpe) {
            rc.response().setStatusMessage("Server Error").setStatusCode(500).end("Server Error");
            log.error("Server error", jpe);
        }
    }

    private void getAllCustomers(RoutingContext rc) {
        log.info("Request for all customers");
        List customers = StreamSupport.stream(dao.findAll().spliterator(), false).collect(Collectors.toList());
        try {
            rc.response().setStatusMessage("OK").setStatusCode(200).end(mapper.writeValueAsString(customers));
        } catch (JsonProcessingException jpe) {
            rc.response().setStatusMessage("Server Error").setStatusCode(500).end("Server Error");
            log.error("Server error", jpe);
        }
    }

“But this is more code and messier than my Spring annotations and classes”, you might say. That CAN be true, but it really depends on how you implement the code. This is meant to be an introductory example, so I left the code very simple and easy to follow. I COULD use an annotation library for Vert.x to implement the endpoints in a manner similar to JAX-RS. In addition, we have gained a massive scalability improvement. Under the hood, Vert.x Web uses Netty for low-level asynchronous I/O operations, thus providing us the ability to handle MANY more concurrent requests (limited by the size of the database connection pool).

We’ve already made some improvement to the scalability and concurrency of this application by using the Vert.x Web library, but we can improve things a little more by implementing the Vert.x EventBus. By separating the database operations into Worker Verticles instead of using blockingHandler, we can handle request processing more efficiently. This is show in the Convert-To-Worker-Verticles branch. The application class has remained the same, but we have changed the CustomerEndpoints class and added a new class called CustomerWorker. In addition, we added a new library called Spring Vert.x Extension which provides Spring Dependency Injections support to Vert.x Verticles. Start off by looking at the new CustomerEndpoints class.


    @PostConstruct
    public void start() throws Exception {
        log.info("Successfully create CustomerVerticle");
        DeploymentOptions deployOpts = new DeploymentOptions().setWorker(true).setMultiThreaded(true).setInstances(4);
        vertx.deployVerticle("java-spring:com.zanclus.verticles.CustomerWorker", deployOpts, res -> {
            if (res.succeeded()) {
                Router router = Router.router(vertx);
                router.route().handler(BodyHandler.create());
                final DeliveryOptions opts = new DeliveryOptions()
                        .setSendTimeout(2000);
                router.get("/v1/customer/:id")
                        .produces("application/json")
                        .handler(rc -> {
                            opts.addHeader("method", "getCustomer")
                                    .addHeader("id", rc.request().getParam("id"));
                            vertx.eventBus().send("com.zanclus.customer", null, opts, reply -> handleReply(reply, rc));
                        });
                router.put("/v1/customer")
                        .consumes("application/json")
                        .produces("application/json")
                        .handler(rc -> {
                            opts.addHeader("method", "addCustomer");
                            vertx.eventBus().send("com.zanclus.customer", rc.getBodyAsJson(), opts, reply -> handleReply(reply, rc));
                        });
                router.get("/v1/customer")
                        .produces("application/json")
                        .handler(rc -> {
                            opts.addHeader("method", "getAllCustomers");
                            vertx.eventBus().send("com.zanclus.customer", null, opts, reply -> handleReply(reply, rc));
                        });
                vertx.createHttpServer().requestHandler(router::accept).listen(8080);
            } else {
                log.error("Failed to deploy worker verticles.", res.cause());
            }
        });
    }

The routes are the same, but the implementation code is not. Instead of using calls to blockingHandler, we have now implemented proper async handlers which send out events on the event bus. None of the database processing is happening in this Verticle anymore. We have moved the database processing to a Worker Verticle which has multiple instances to handle multiple requests in parallel in a thread-safe manner. We are also registering a callback for when those events are replied to so that we can send the appropriate response to the client making the request. Now, in the CustomerWorker Verticle we have implemented the database logic and error handling.

@Override
public void start() throws Exception {
    vertx.eventBus().consumer("com.zanclus.customer").handler(this::handleDatabaseRequest);
}

public void handleDatabaseRequest(Message<Object> msg) {
    String method = msg.headers().get("method");

    DeliveryOptions opts = new DeliveryOptions();
    try {
        String retVal;
        switch (method) {
            case "getAllCustomers":
                retVal = mapper.writeValueAsString(dao.findAll());
                msg.reply(retVal, opts);
                break;
            case "getCustomer":
                Long id = Long.parseLong(msg.headers().get("id"));
                retVal = mapper.writeValueAsString(dao.findOne(id));
                msg.reply(retVal);
                break;
            case "addCustomer":
                retVal = mapper.writeValueAsString(
                                    dao.save(
                                            mapper.readValue(
                                                    ((JsonObject)msg.body()).encode(), Customer.class)));
                msg.reply(retVal);
                break;
            default:
                log.error("Invalid method '" + method + "'");
                opts.addHeader("error", "Invalid method '" + method + "'");
                msg.fail(1, "Invalid method");
        }
    } catch (IOException | NullPointerException e) {
        log.error("Problem parsing JSON data.", e);
        msg.fail(2, e.getLocalizedMessage());
    }
}

The CustomerWorker worker verticles register a consumer for messages on the event bus. The string which represents the address on the event bus is arbitrary, but it is recommended to use a reverse-tld style naming structure so that it is simple to ensure that the addresses are unique (“com.zanclus.customer”). Whenever a new message is sent to that address, it will be delivered to one, and only one, of the worker verticles. The worker verticle then calls handleDatabaseRequest to do the database work, JSON serialization, and error handling.

There you have it. You’ve seen that Vert.x can be integrated into your legacy applications to improve concurrency and efficiency without having to rewrite the entire application. We could have done something similar with an existing Google Guice or JavaEE CDI application. All of the business logic could remain relatively untouched while we tried in Vert.x to add reactive capabilities. The next steps are up to you. Some ideas for where to go next include Clustering, WebSockets, and VertxRx for ReactiveX sugar.